skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dong, Changming"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. Abstract The South Atlantic Ocean is an important region for anthropogenic CO2(Canth) uptake and storage in the world ocean, yet is less studied. Here, after an extensive sensitivity test and method comparison, we applied an extended multiple linear regression method with six characteristic water masses to estimate Canthchange or increase (ΔCanth) between 1980s and 2010s in the South Atlantic Ocean using two meridional transects (A16S and A13.5) and one zonal transect (A10). Over a period of about 25 years, the basin‐wide ΔCanthwas 3.86 ± 0.14 Pg C decade−1. The two basins flanking the Mid‐Atlantic Ridge had different meridional patterns of ΔCanth, yielding an average depth‐integrated ΔCanthin the top 2000 m of 0.91 ± 0.25 mol m−2 yr−1along A16S on the west and 0.57 ± 0.22 mol m−2 yr−1along A13.5 on the east. The west‐east basin ΔCanthcontrasts were most prominent in the tropical region (0–20°S) in the Surface Water (SW), approximately from equator to 35°S in the Subantarctic Mode Water (Subantarctic Mode Water (SAMW)), and all latitudes in the Antarctic Intermediate Water (AAIW). Less ΔCanthin the eastern basin than the western basin was caused by weaker ventilation driven by SAMW and AAIW formation and subduction and stronger Antarctic Bottom Water (AABW) formation in the former than the latter. In addition to the spatial heterogeneity, Canthincrease rates accelerated from the 1990s to the 2000s, consistent with the overall increase in air‐sea CO2exchange in the South Atlantic Ocean. 
    more » « less
  3. Abstract As one kind of submesoscale instability, symmetric instability (SI) of the ocean surface mixed layer (SML) plays a significant role in modulating the SML energetics and material transport. The small spatial scales of SI,O(10 m–1 km), are not resolved by current climate ocean models and most regional models. This study describes comparisons in an idealized configuration of the SI parameterization scheme proposed by Bachman et al. (2017,https://doi.org/10.1016/j.ocemod.2016.12.003) (SI‐parameterized) versus the K‐Profile Parameterization scheme (SI‐neglected) as compared to a SI‐permitting model; all variants use the Coastal and Regional Ocean Community Model version of the Regional Ocean Modeling System and this study also serves to introduce the SI parameterization in that model. In both the SI‐parameterized and SI‐permitting models, the geostrophic shear production is enhanced and anticyclonic potential vorticity is reduced versus the SI‐neglected model. A comprehensive comparison of the energetics (geostrophic shear production, vertical buoyancy flux), mixed layer thickness, potential vorticity, and tracer redistribution indicate that all these variables in the SI‐parameterized case have structures closer to the SI‐permitting case in contrast to the SI‐neglected one, demonstrating that the SI scheme qualitatively improves representation of the impacts of SI. This work builds toward applying the SI scheme in a realistic regional or climate model. 
    more » « less